Predictive Mobility: to Increase Safety and Reduce Congestion at Rail Crossings Kurt Brandt, PhD, CEO LinqThingz

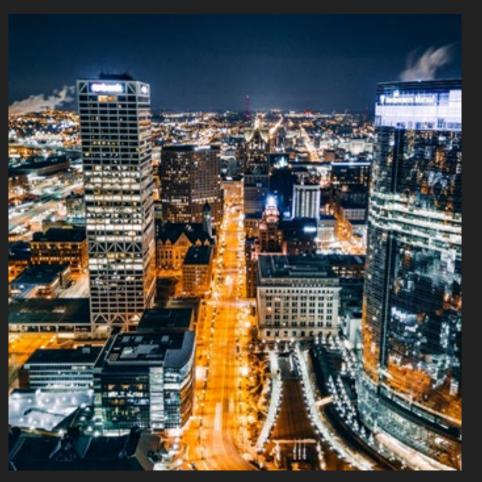
A Predictive Mobility Company

Characteristics of Rail, Road, Pedestrian Traffic at Grade Crossings

Safety and Congestion impacts

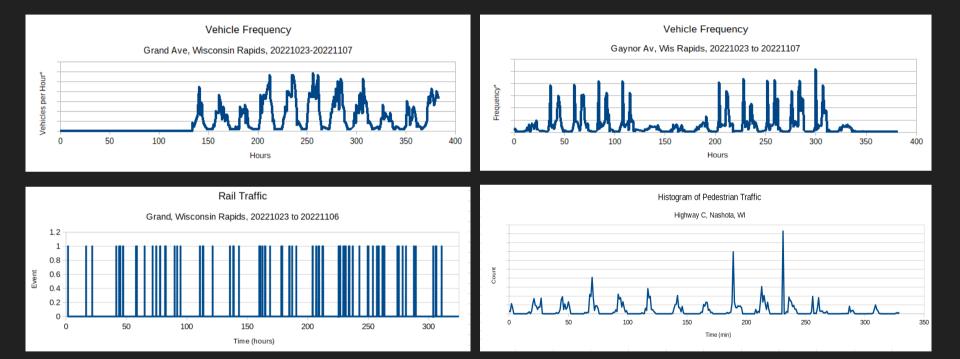
Measuring Data

Predictive Mobility

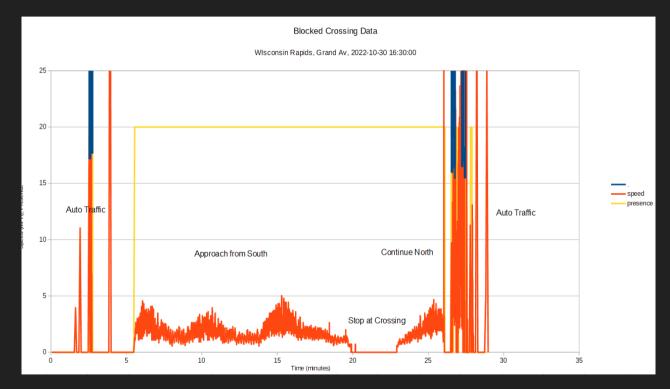

Driver Information Systems for Predictive Mobility

1860s

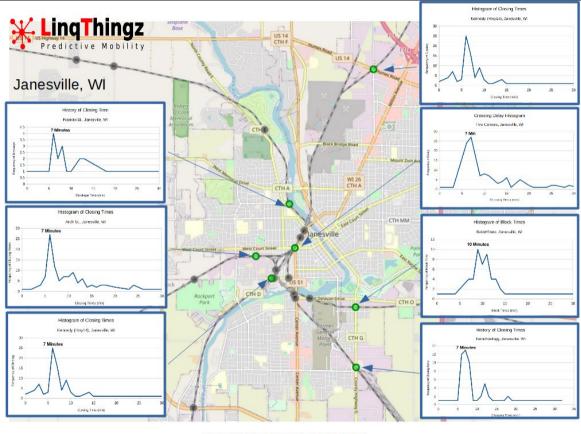
- Roads where Dirt
- Traffic was Horses
- Crossing Speed 4 MPH
- US Population 30M
- Attention Span 20 min
- Transcontinental Rail
- Cross bucks Patented



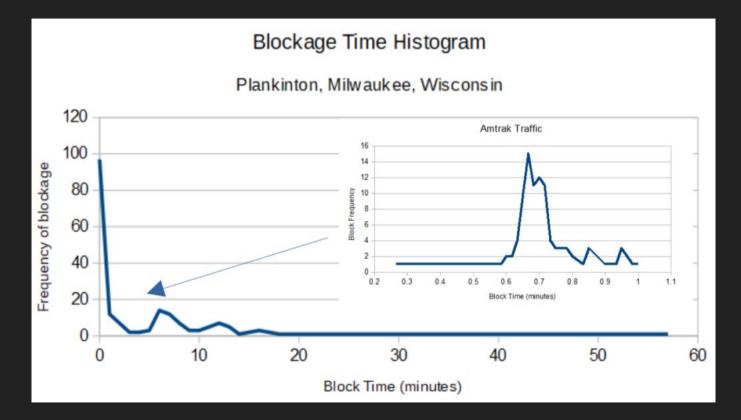
ing hingz


- Roads are Complex
- Fuel/Electric/Autonomous
- US Population 300M
- 250,000 crossings
- Attention Span 9 seconds
- Connected Phones/Cars

Rail Traffic vs Highway Traffic vs Pedestrian Traffic

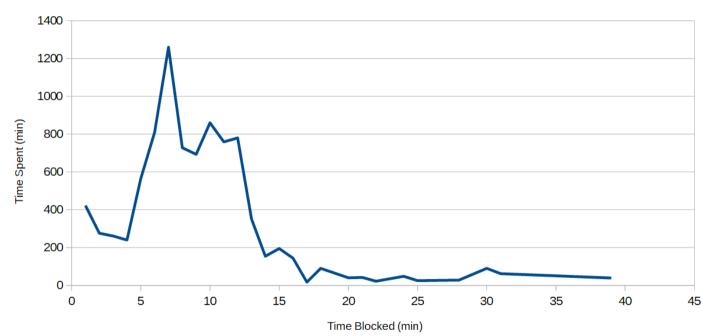

<mark>¥ LinqT</mark>hingz

Rail Traffic can be Complex (Speed data)

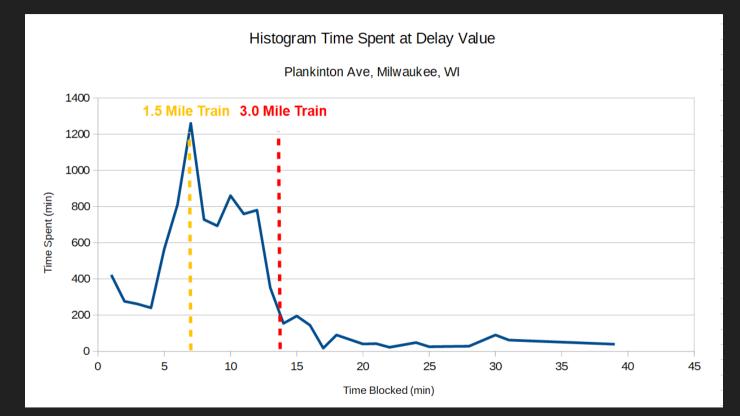

Blockage Statistics on Freight Traffic

Copyright © 2023 LingThingz, Inc. All Rights Reserved

Blockage Statistics Commuter versus Freight Traffic



Blockage Time vs Time at Crossing

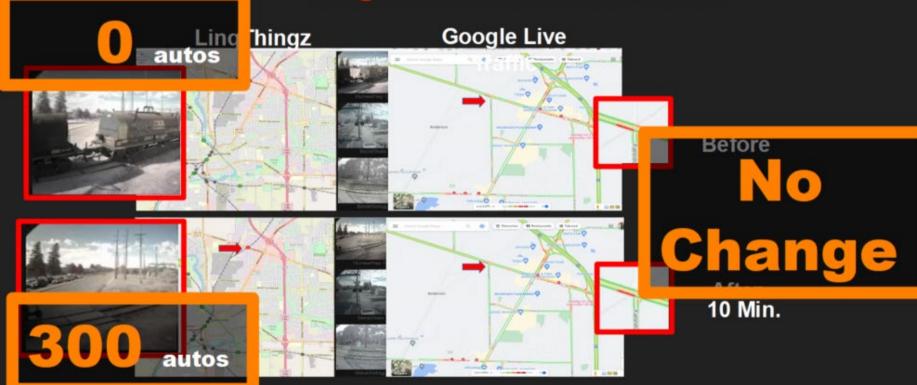

Histogram Time Spent at Delay Value

Plankinton Ave, Milwaukee, WI

1.5 mile trains vs 3.0 mile trains

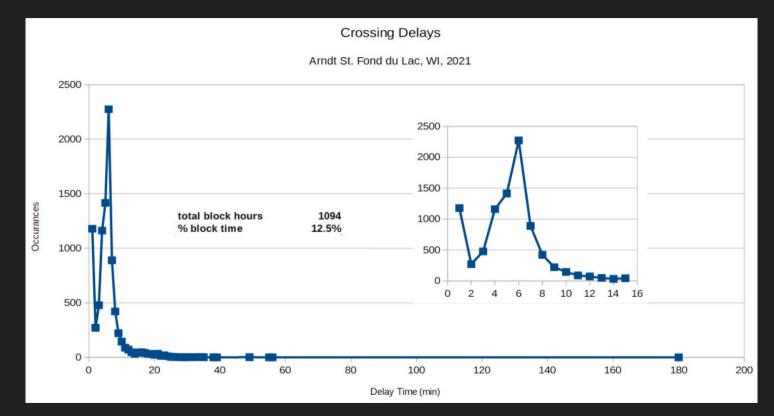
Beware of Summary Results

SUMMARY Plankinton	
Test Start (UTC)	'2023-01-26 00:00:00'
Test End (UTC)	'2023-02-04 00:00:00'
Test Duration	9 days / Commute
Total Close Time	848.20 minutes
Average Close Time	4.74 minutes
Maximum Close Time	57.16 minutes Freight ~
Most Frequent Wait Time	7 minutes
Average Speed at Close	15.54 MPH
Average Speed at Open	10.63 MPH
Close Time per day	94 minutes
Close Time percentage	6.54%
Trains per day	20 trains
AADT	6600 vehicles
Vehicles blocked per day	432 vehicles
Vehicle blocked hours per year	12447 hours


10 min

~ 45 sec

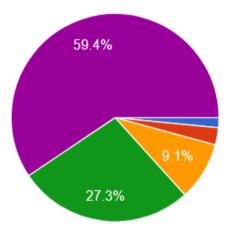
Linq hingz


Beware of Social Travel Data

Google Does NOT Solve This!

Blockage can be 3 hours each day!

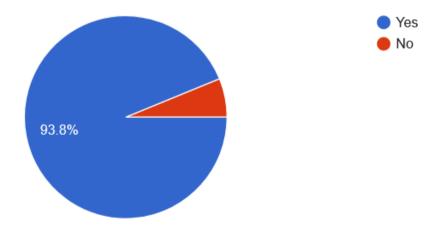
Clarity about Traffic at Highway Rail Grade Crossings


71% of deaths occur at crossings with improved safety measures*

States report little change or decrease in safety after improvement*

Survey Results match Data!

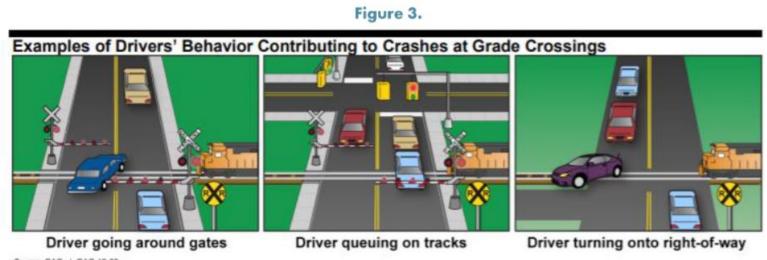
What is the LONGEST time that you waited at a rail crossing?



Clarity about Traffic at Highway Rail Grade Crossings

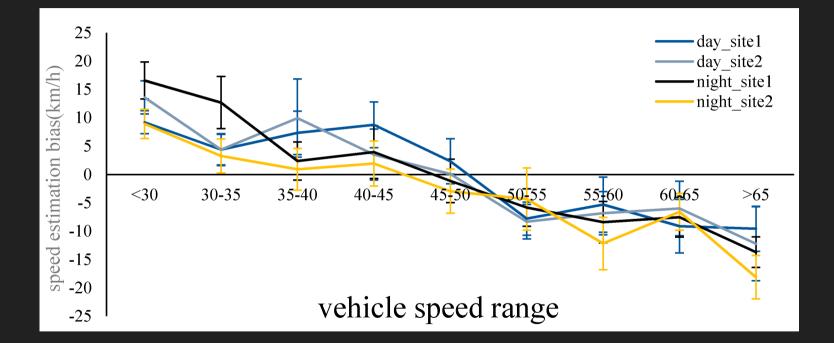
When approaching an intersection blocked by a train, have you turned around, used neighborhood streets or tried to beat the train to an unblocked at-grade crossing to avoid being delayed?

"Congestion Frustration"



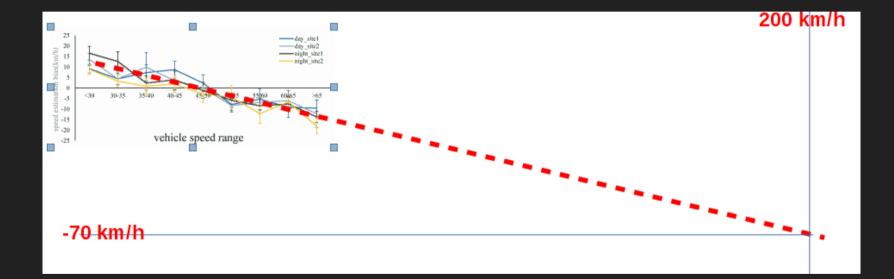
Common Behavior

Source: GAO. | GAO-19-80



Catastrophic Results

Brightline trains have the highest death rate in the U.S., fatally striking 98 people since Miami-West Palm operations began


Error In Human Speed Estimation

Error In Human Speed Estimation

e.g. extrapolate for High Speed Rail

"Congestion Impact"

Calculated Impact

Congestion Impact at Grade Crossing	JS
AADT(vehicles)	33,960.00
Carbon Cost (\$)	\$22,031.58
Fuel (\$/yr)	\$198,326.40
Citizen Costs (\$/yr)	\$1,804,770.24
Supply Chain Costs (\$/yr)	\$3,476,909.70
Total	\$5,502,037.92

Small city – 16 Crossings, Population 11,000

Calculated Impact

Railroad Subdivision	Number of Identified Grade Separations	Estimated Cost		Estimated Public Benefit (20-year)		Ratio: Benefit/Cost (20-year)	
Austin ML-1	21	\$	267,900,000	\$	290,020,000	1.08	
Austin ML-2	10	\$	177,800,000	\$	74,910,000	0.42	
Corpus Christi	9	\$	84,200,000	\$	39,980,000	0.47	
Del Rio	11	\$	126,300,000	\$	218,800,000	1.73	
Glidden	8	\$	165,900,000	\$	103,080,000	0.62	
Laredo	7	\$	101,700,000	\$	60,560,000	0.60	
Total:	66	\$	923,800,000	\$	787,350,000	0.85	

Large City – 66 Crossings

Calculated Impact

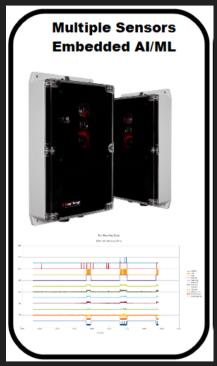
County	AADT	Carbon (\$/yr)	Citizen Costs (\$/yr)	Logistics Costs (\$/yr)	Totals
Waukesha	335,900	\$453,991	\$25,165,898	\$71,646,420	\$97,266,309
Milwaukee	227,300	\$307,211	\$36,005,060	\$48,482,380	\$84,794,650
Racine	80,600	\$108,936	\$8,923,763	\$17,191,728	\$26,224,428
Kenosha	25,800	\$34,870	\$2,856,490	\$5,503,059	\$8,394,420
Ozaukee	33,100	\$44,737	\$3,664,722	\$7,060,127	\$10,769,585
Walworth	26,000	\$35,141	\$2,878,633	\$5,545,719	\$8,459,493
Washington	51,700	\$69,876	\$5,724,052	\$11,027,448	\$40,004,070
Totals	780,400	\$1,054,761	\$85,218,618	\$166,456,881	\$252,730,261

Seven Counties – 300 Crossings, Population 2 million

"Data Collection"

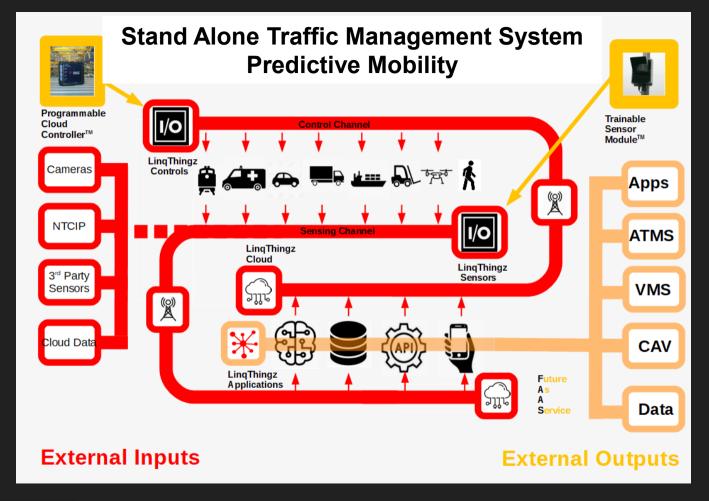
Trainable FUSION SENSORS

			1	1	1	1	1
Feature	Fusion	Audio	RADAR	LIDAR	Magnetic	Video	IR
Train Presence	v	✓*	v	V	v	~	v
Train Speed	V	×	× **	× **	× **	× ***	x ***
Train Direction	V	×	× **	×	V	× ***	× ***
Train Length	V	✓*	V	v	v	× ***	× ***
Cross Guard Operation	v	×	×	v	×	× ***	×
Highway Blockage	v	×	×	×	×	x ***	×
Trespassers/Pedestrians	v	×	×	×	×	× ***	v
Multiple Trains	v	×	×	×	v	×	×


* Roop et.al. Concluded that indicated that the false alarm rate of the system was too high (94.3 percent) even though the system did not make any true negative detections. Roop, S. S., Olson, L. E., Ruback, L. G., Roco, C. E., and Protopapas, A. (2007). An Analysis of Low-Cost Active Warning Devices for Highway-Rail Grade Crossings. Texas Transportation Institute, College Station, Texas.

** Can be achieved with multiple sensors

*** Can be achieved with AI software. LinqThingz is the only comprehensive AI provider for all these solutions.


One Box, Sensor Array, ML, Configurable

Trainable Sensor Modules LIDAR RADAR Camera Infrared Magnetometer Audio **Power Monitor Temperature** Humidity **Atmospheric Pressure** Adhoc external connected data

FUSION SENSOR with a suite of on-board sensors connected through Machine Learning is the most advanced, accurate and reliable solution for identifying rail vehicles, pedestrians, etc.

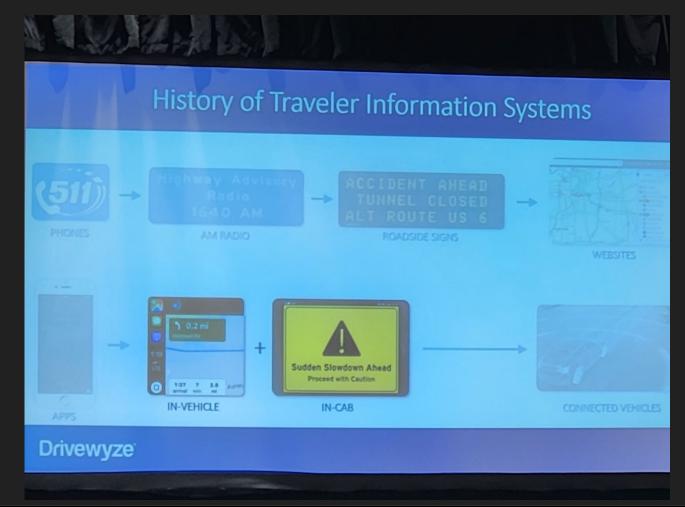
<mark>₩ LinqThingz</mark>

ing hingz

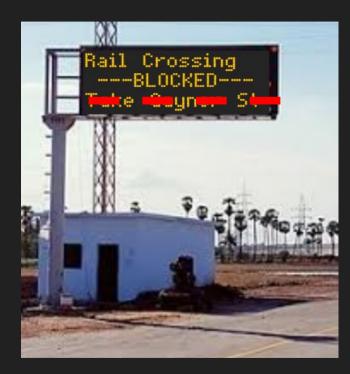
Trainable = Multi Use Cases

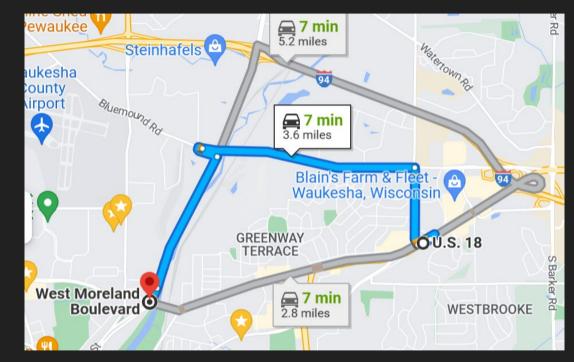
Trespassing **Pedestrian Crossing Intent Vehicle Crossing Intent ROW Blockage Guard Circumvent** Stalled Vehicle **Anomalous Rail Truck Noise Anomalous Rail Truck Heat GPS** correction messages Local Environmental Info

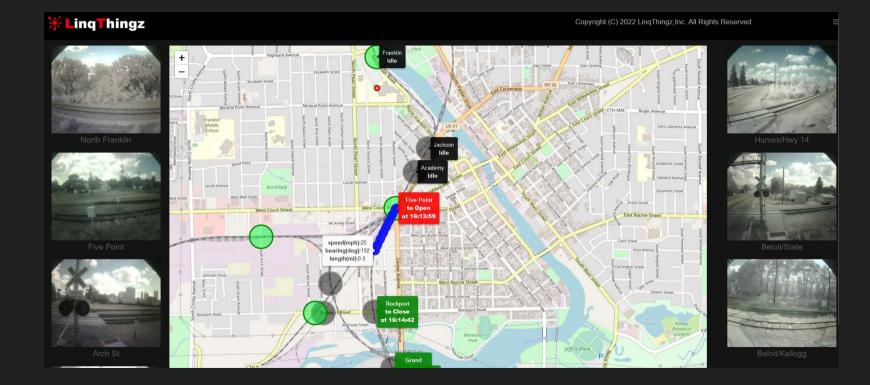
Solution! Predictive Mobility:


- 1. Provides advanced notification
- 2. Alternative routes capability
- 3. Improves Safety by keeping traffic away from RR occupied ROW
- **4.** Reduces cost/time for Commerce
- 5. Improves congestion/quality of life
- 6. Reduces Pollution

Value Comparison


	12-year Carbon Tons	12-year cost	Cost/Ton	Cost/Ton/Cros	ssing
Electric Bus	1380	\$1,000,000.00	\$724.64		
Predictive Mobility	5280	\$458,000.00	\$86.74	\$7.23	
	12-year AADT	12-year cost	Cost/Usage		
Bridge 1 Crossing		12-year cost \$35,000,000.00			
Bridge 1 Crossing Predictive Mobility		\$35,000,000.00	\$245.098		

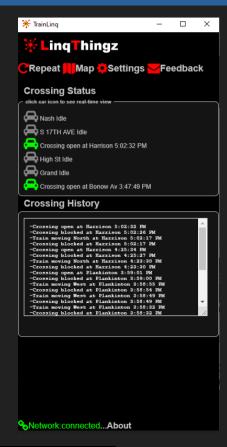



Variable Message Signage (VMS)

Dispatch Applications

Apps

Connect and Autonomous Vehicle (CAV)



Road Side Unit (RSU) connectivity

Traveler Information Message

Mobile Applications

ing hingz

Solution/Testing (Community)

1) Measure Existing Traffic Details (O/D)

2) Perform Public Surveys

- 3) Implement Predictive Mobility Solution
- 4) Perform Public Surveys

5) Measure Existing Traffic Details (O/D)

SUMMARY

Rail Traffic has a big impact in the communities where it operates!

There significant safety and congestion impacts

Rail Traffic is a complex combination of through, switching and commuter rail

There are few places to find sufficiently detailed information regarding rail traffic

Fusion sensors provide robust data suitable for Predictive Mobility in CAV

Predictive Mobility and Crossing Intent are key for CAV applications

Predictive Mobility: to Increase Safety and Reduce Congestion at Rail Crossings Kurt Brandt, PhD, CEO LinqThingz


A Predictive Mobility Company

THANK YOU! THANK YOU! THANK YOU! THANK YOU!

Kurt Brandt, PhD, CEO, KBrandt@LinqThingz.com

2023/04/26