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What s Artificial Intelligence?

Some general definitions

* “Artificial intelligence is a computerized system that exhibits behavior
that is commonly thought of as requiring intelligence.”

e “Artificial Intelligence is the science of making machines do things that
would require intelligence if done by man.”

 The founding father of Al, Alan Turing, defines this discipline as: “Al is

the science and engineering of making intelligent machines, especially
intelligent computer programs.”



BIG DATA
@

Capable of processing massive
amounts of structured and
unstructured data which
can change constantly

Ability to learn based on historical
patterns, expert input and feed-
back loop

LEARNING

; Ability to reason (deductive or

', and general-purpose domain

REASONING
@

inductive) and to draw
inferences based on situation.
Context driven awareness
of system.

Capable of analyzing and

solving complex
problems in special-purpose

PROBLEM SOLVING



deep learning

machine learning

supervised

unsupervised
content extraction

classification

machine translation
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question answerin

text generation

(Al)

Artificial Intelligence

image recognition

: o vision
machine vision
speech to text
te “~.__Speech
text to Speech >
planning

robotics
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* |t's a branch of artificial
intelligence (Al) based on the
idea that systems can learn

from data, identify patterns | "+,og, -
and make decisions with e-te SR s

B alb+c)=ab+ac 100002+ 100b- ’”

minimal human intervention. { 6 =69

2%+ 2y=20




Meaningful
Compression

Structure Image
Discovery Classification
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Customer Retention

Big data Dimensionality Feature Idenity Fraud

isualistai . Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robaot Navigation Skill Acquisition

Learning Tasks



Machine Learning Techniques

Supervised Learning

e Labels are provided,
there is a strong
learning signal.

e e.g. classification,
regression.

e There is no direct
learning signal. We
are simply trying to

find structure in data.

e e.g. clustering,
dimensionality
reduction.

e The learning signal is
a (scalar) reward and
may come with a
delay.

e e.g. trying to learn to
play chess, a mouse
In @ maze.



Machine Learning Techniques

MACHINE LEARNING
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UNSUPERVISED
LEARNING

Group and interpret
data based only
on input data

—} CLUSTERING

A

SUPERVISED
LEARNING

Develop predictive
model based on both
input and output data

. / CLASSIFICATION
J\ REGRESSION




L MACHINE LEARNING J
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Selecting an
Algorithm

SUPERVISED {UNSUPERVISED}
LEARNING LEARNING
* There is no best method or one f\ l
size fits all.
* Finding the right algorithm is partly CLASSIFICATION { REGRESSION CLUSTERING }
just trial and error. \ ) J
But algorithm selection also Support Vector T | e e K oot |
o \. " . S - J
depends on the size and type of ot ) [ emoe ) [ )
data you’re working with, the A | J )
. . s ~ - p -
|nS|ghtS you Wa nt to get from the Maive Bayes Ensemble Methods Gaussian Mixture
data, and how those insights will > N 7 {
Mearest Neighbor Decision Trees MNeural Networks
be used. \ J ) L ]
r ™ ' . ™y
Meural Metworks Hldd:&nolcl:rkov
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& The success of machine learning system also depends on the

e,

an algorithms.

@9\ The algorithms control the search to find and build the knowledge
structures.

ﬂ The learning algorithms should extract useful information from
training examples.
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Classification
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Supervised learning

Unsupervised learning
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unsupervised Machine Learning
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Predicting Crashes hy Applying Machine Learning on
New Sources of Driver Behaviour Data

* Goal: To identify areas on road network where heavy
vehicles exhibited a high number of harsh braking
events, to predict a sites crash harm potential.

* Data: Two data sets were considered
—EROAD GPS Data
—New Zealand Crash Analysis System (CAS) Data
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Predicting Grashes by Applying Machine Learning on
New Sources of Driver Behaviour Data

 Methodology: Unsupervised Learning

—Machine Learning

* DBSCAN Clustering - Density-based spatial clustering of
applications with noise
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RESULTS

Figure 1: Harsh Braking Events at a Figure 2: Concave Hull From Harsh Figure 3: lllustration Representing

Single Intersection Encompassed by a Braking Cluster Overlapping With the Overlapping Nature of Two
Concave Hull Geometry Concave Hull From Crash Cluster Planes in Both 2D and 3D Space
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RESULTS

Contribution of variables to Dim-1-2-3 DISTRIBUTION OF PREDICTED CRASH LOCATIONS

Functional Class Original Predicted
Clusters Crash
Locations
___________________________ National 215 0
Regional 402 5
Arterial 1423 26
Collector 2446 60
IIIII Access 3103 10
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Figure 4: Results of PCA Showing Contributions of All Variables
in Dimensions 1, 2, and 3
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TRENDS AND GHALLENGES POSED BY MEDIUM-DUTY TRUCKS T0
THE OPERATION AND SAFETY OF OREGON HIGHWWAYS

« Goal: To attempt to estimate crash potential of
Medium-duty vehicles (10,000 to 26,000 Ibs.) by
four potential generators

 Data:

— Oregon Department of Transportation merged crash data
« ODOT Crash Data System (CDS)
« DMV Driver Crash Data
« DMV Vehicle Characteristics

« National Highway Transportation Safety Administration (NHTSA)
Vehicle Data

— Medium-duty truck generators Geospatial information



42D .
8\ Oregon State University
@4@ College of Engineering

TRENDS AND CHALLENGES POSED BY MEDIUM-DUTY TRUCKS
TO THE OPERATION AND SAFETY OF OREGON HIGHWAYS

* Methodology:
Unsupervised Learning

—Machine Learning

 DBSCAN Clustering -
Density-based spatial
clustering of applications
with noise

Noise. Points
are not density-
reachable from
nearest point

Eps=1
MinPts =4

p and q are
density-
reachable.
Therefore p N P
and q are

density- . .
connected e
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Figure 1: Spatial spread of medium duty Medium-Truck crashes and Generators in Oregon
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« Unsupervised Machine Learning

— Clustering
- DBSCAN



LD o
A Oregon State University
College of Engineering

supervised Machine Learning

Classification
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Roundahout Safety: Econometric and Machine

« Goal: To compare machine learning supervised
techniques (algorithms) to econometric
techniques

- Data: Oregon Department of Transportation
Crash data at roundabouts
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Roundahout Safety: Econometric and Machine

Learning Models and Applications
- Methodology:
—Econometric model
« Random parameter binary probit model (RPBP)

—Machine learning
« Support vector machine (SVM)
 Linear kernel
« Radial (nonlinear) kernel
* Polynomial kernel
* Sigmoid kernal
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M ethodologv Assess prediction of

—»] binary probit and SVM
(70-30)

Assess prediction of

| _ _ bi bit and SVM
using binary probit model > e IO(rBOO-IZ({;l)n

Three- and four-leg Determine variables
roundabout crash data

Assess prediction of
—»| binary probit and SVM
(90-10)

IIIIIIIII".."’:' 2
..i

5{5}
3N
)
3
'I \

Assess prediction of
—»] binary probit and SVM
(70-30)

Th df | Det . iabl Assess prediction of
ree- and four-leg etermine variables »| binary probit and SVM
roundabout crash data using a random forest (80-20)

Assess prediction of
| Dbinary probit and SVM
(90-10)




Summary

* The study compared the predictive
performance of crash injury severity
between various machine-learning and
econometric techniques based on
three-leg and four-leg roundabout
crash data from 2011 to 2015 in
Oregon.

* Machine-learning models
outperformed the econometric model
in injury severity prediction.




Learning Al . A

e Structured

e Certificate Programs

* Short courses on YouTube

iz 1BM Skills Network
or., IBM Applied Al
. fr‘ee CO . ¥ o v . .
ntent pro . skills you'lt gain: Algorithms, Application
. V :
un'VerSities Ided by Programmmg\n

terfaces, Applied Machine...

J¢ 4.6 (39 2K reviews)

Beginner- Profess‘\ona\ Certificate” 3-6 Months
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Transportation Agency Adoption

« Collaborative Research
* Training

« Use Cases

« Data
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« Given the amount of data being collected by
today's transportation agencies, methods are
needed to more efficient analyze and sort
through the mountains of data

« Several Machine Learning techniques have
already been applied, many are in process, and
much more to come.
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