Automated Vehicles in Wisconsin

Research - Testing - Development - Evaluation - Deployment

Annual ITS Forum November 8, 2017

CASE IH

Trends and Outcomes

• Shared • Con'

- Electric
- Connected
- **Automated**

- Safety
- Vehicle Miles Traveled (VMT)
- Sprawl
- Parking
- Energy
- Air Quality
- Public Health
- Equity
- Accessibility

How AVs Operate

Cameras gather visual information from the road and traffic control and send them to the controller for processing.

LiDAR sensors bounce lasers off of detected objects. LiDAR can detect road lines and assets and differentiate objects.

RADAR
Radar sensors bounce radio
waves off detected objects.
Radar cannot differentiate
objects.

GPS UNIT
The GPS unit identifies the precise position of the vehicle and aids in navigation.

SAE Levels of Automation

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of <i>Dynamic</i> <i>Driving Task</i>	System Capability (Driving Modes)
Huma	Human driver monitors the driving environment					
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Autor	Automated driving system ("system") monitors the driving environment					
3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated</i> driving system of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode</i> -specific performance by an automated driving system of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

Levels Depend on Circumstances

Tesla Florida May 2016

Tesla, March 2017

Uber, March 2017

Breadth, Complexity, Edge Cases

(An) AV Timeline

driver assistance common

• some partial automation available to consumers

2020

• limited / conditional AVs widely available to consumers

2025

autonomous shared mobility fleets

2030

high automation required in all new vehicles

2035

human operation is the exception in many places

2040

- transition to driverless largely complete
- fleet turnover continues...

- Any estimate is debatable
- We are only at the beginning of a long transition period

Federal AV Policy

- Released Sep 20, 2016
- Updated Sep 12, 2017
- Voluntary guidelines
 - Not regulations
- Level 3+ Only
- 12 Safety Elements
- Guidance for State Policy

NHTSA's 45 12 Safety Elements

- 1. System Safety
- Operational Design Domain
- Object and Event Detection and Response
- 4. Fall Back (Minimal Risk Condition)
- 5. Validation Methods

- 6. Human Machine Interface
- 7. Vehicle Cybersecurity
- 8. Crashworthiness
- 9. Post-Crash **ADS**Behavior
- 10. Data Recording and Sharing

- 11. Consumer
 Education and
 Training
- 12. Federal, State and Local Laws
- 13. Privacy
- 14. Registration and Certification
- 15. Ethical Considerations

USDOT AV Proving Grounds

- Peer network
- Advise government
- Validate industry
- Awarded January 2017

...no funding

Ten Designated AV Proving Grounds

Range of RDT&E Environments

Simulation

Lab

Closed Track

Controlled Demo

Limited Facility

Public Roads

AUTOMATED VEHICLES IN WISCONSIN

International

Sturgeon B

Algoma

Manitowoc

PROVING GROUNDS

UW-Madison College of Engineering

Full Scale Driving Simulator

MGA Research, Burlington

400 acres, private and secure, numerous testing capabilities

Road America, Elkhart Lake

- Road track: 4.05-mile length, 30-foot width
- 1-mile combo paved-dirt track
- 12+ miles off-road
- 10+ miles access roads
- Major race events and media presence

- Corporate Campuses
- UW-Madison Campus
- City of Madison

PROVING GROUNDS

Connected Park Street Corridor

- Piloting CV technology to improve:
 - Safety
 - Mobility
 - Bus on-time performance
 - Equity
- V2I, V2V, V2X
- Madison and Wisconsin as the Upper
 Midwest hub for CV & AV development

Committee on Automated and Connected Vehicles

"the removal of barriers to the testing and deployment of automated and connected vehicle technology in Wisconsin"

- May 2017 EO #245
- Sept 2017 Kickoff
- June 2018 Report Due
- Members:
 - Government: WisDOT, WSP, WEDC, Assembly, Senate, Iowa Co Sheriff, Insurance Commissioner
 - Academic/Nonprofit: UW-Madison, Tech Council, ABATE
 - <u>Industry</u>: MGA, Roadview, Waymo, Uber, Tesla, AAM, Global Automakers, Dealers Assn, Harley, Schneider, HNTB

Level 4 Shuttle Demonstration Next Week

Stay Engaged

Contact: Peter Rafferty

Email: Rafferty@WiscAV.org

Call: **608-516-9382**

Visit: WiscAV.org

