Evaluating Multiple Data Sources for WisDOT Travel Times

TRAVEL TIME TECHNOLOGY EVALUATION

Jonathan Riehl jonathan.riehl@wisc.edu University of Wisconsin-Madison Traffic Operations and Safety Lab

Elizabeth Schneider

elizabeth1.schneider@dot.wi.gov Wisconsin Department of Transportation Bureau of Traffic Operations

ITS Wisconsin Forum November 8, 2017

Outline

T3E Project Background
 WisDOT Travel Times
 Why Analysis Needed

Data Quality Comparison

- Data Reliability
- Travel Times and Analysis
- Cost Effectiveness Assessment
- Conclusions and Recommendations

T3E Project Background

WISDOT TRAVEL TIMES

ARTERIAL TRAVEL TIMES

Milwaukee County

Janesville

2015 Zoo I/C Reconstruction

COMPARABLE TIMES

I-39/90 CONSTRUCTION

ALTERNATE ROUTE TRAVEL TIME – DATA SOURCES

- Probe Data
- License Plate
- Bluetooth
- Magnetometers
- Radar Detection

- Data Type
- Familiarity
- Integration
- Reliability
- Cost

- Probe Data \$90k
- Microwave \$1.5M
- Bluetooth \$1M
- Magnetometers \$2M
- License Plate Readers \$2.5M

STOC ATMS

T3E Project Objectives

- Compare arterial versus freeway travel times
- Compare long term versus short term travel times (cases such as alternative routes for construction projects)
- Compare costs of acquiring and maintaining data among competing technologies
- Compare difficulty of accessing and processing data sources
- Determine other uses of travel time data
- Integrate technologies into the transportation systems management and operations (TSM&O) decision process for detection

Data Quality Comparison

T3E Study Overview – Study Area and Periods

Corridor	Corridor Start/End	Location	Route Type	Data Types
US 12/18	I-39/90 to WIS 73	East of Madison	Rural Arterial	TomTom, NPMRDS, Bluetooth
US 14 M (Madison)	US 12/18 to County MM	Fitchburg	Rural/ Urban Freeway	TomTom, NPMRDS, Bluetooth, ATR
County M	US 18/151 to County MM	Fitchburg/ Verona	Rural Minor Arterial	TomTom, NPMRDS
US 14 J (Janesville)	I-39/90 to WIS 140	East of Janesville	Rural/ Urban Arterial	TomTom, NPMRDS, Bluetooth, ATR
WIS 73	I-39/90 to WIS 106	Albion	Rural Arterial	TomTom, NPMRDS, Microwave
E Washington (US 151)	Blair St to Portage Rd	Madison	Urban Arterial	TomTom, NPMRDS, Bluetooth, ATR
I-39/90	IL Border to I-94	Dane/ Rock	Rural Freeway	TomTom, NPMRDS, Bluetooth, ATR, Microwave/Loop
US 12	I-39/90 to Parmenter St	South of Madison	Urban Freeway	TomTom, NPMRDS, Bluetooth, ATR, Microwave, Loop

Time Periods:

AM Rush, AM Peak, PM Rush, PM Peak, Weekday Daytime, Weekend Daytime, Nighttime

Data Quality

• Ease of Data Access

TomTomote tency for Real-Time Application

Welcome, Wisconsin_DOT_Madison (Log out)

Data Availability

Data Availability Example – I-39/90

Total vehicle count – Number of vehicles counted/matched by detectors

Time Period	TT – CTT	BT	NPMRDS	μWave/Loop	ATR
AM Rush	82.2 61.4	163.7 138.5	Unknown	1813 1500	2233 1763
AM Peak	0201010	164011260	Unknown	1936 1490	2353 1826
PM Rush	Point dete	ection can m	niss key	2066 2124	489 2778
PM Peak	incidents	for travel ti	nes	2121 2247	551 2913
Weekday Daytime	203.3 233.0	0.66T 0.06T	υπκποιντι	1817 1714	2289 2232
Weekend Daytime	131.1 121.6	143.2 146.0	Unknown	1756 1682	2249 2305
Nighttime	33.3 29.9	71.5 67.5	Unknown	516 501 🧹	624 639

Units are in average number of vehicles per hour per segment or detector, NB | SB

Total vehicle percentage of vehicles counted out of total on route

Time Period	ТТ – СТТ	ВТ	NPMRDS
AM Rush	4.1 3.8	8.1 8.5	
AM Peak	3.9 3.7	7.7 8.3	Unki Low total vehicle
PM Rush	5.4 4.9	Probe	data porcontagos do not oquato
PM Peak	5.3 4.7	improv	ving percentages up not equate
Weekday Day ime	12.8 11.9		to poor travel time estimates
Weekend Daytine	6.5 6.1	/.1 7.3	Unkn
Nighttime	5.8 5.8	2.5 13.2	Jnknown
AM Peak PM Rush PM Peak Weekday Day ime Weekend Daytime Nighttime	3.9 3.7 $5.4 4.9$ $5.3 4.7$ $12.8 11.9$ $6.5 6.1$ $5.8 5.8$ (n m of yob	7.7 8.3 Probe improv 7.1 7.3 7.2.5 13.2	Unki data ving Urkni Urkni Urkni Unknown

Units are in percent (n. γ , of veh. Fer avg. AT γ μ wave/loop count per seg. per detector), NB | SB

Data Availability Example – I-39/90

Observation pct. – Pct. of segment-intervals that have at least one vehicle detected on route

Time Period	TT – CTT	BT	NPMRDS	µWave/Loop
AM Rush	Unknown	100.0 100.0	95 95.4	86.4 91.6
AM Peak	Unknown	100.0 100.0	95 95.3	86.5 91.7
PM Rush	Unknown	100.0 100.0	95.4 97.1	84.1 91.7
PM Peak	Unknown	100.0 100.0	95.2 96.9	84.2 92.0
Weekday Daytime	Unknown	99.8 100.0	95.6 96.8	84.3 91.6
Weekend Daytime	Unknown	99.9 100.0	94.9 95.7	86.2 90.5
Nighttime	Unknown	99.9 99.8	89.3 87.1	86.3 87.4

Units are in percentage of segment time periods with at least one observation, NB | SB

Useable travel time availability pct. – Pct. of the servals that have calculable travel times

Time Period TT	– CTT 🦯	ВТ	NPMRDS	µWave/Loop
	11	100.0 100.0	100.0 99.8	100.0 100.0
Bluetooth percentage	S (n	100.0 100.0	1.0.0 99.6	100.0 100.0
^a include travel times	'n	100.0 100.0	100.0 100.0	100.0 100.0
^a that may not have be	en ^{'n}	100.0 100.0	100.0 100.0	100.0 100.0
floweileble in real time	ุ่ท	100.0 100.0	10.0 100.0	99.8 100.0
· available in real time		100.0 100.0	1 0.0 100.0	99.8 99.8
Nighttime Unl	known	100.0 100.0	97.2 92.5	100.0 100.0

Units are in percentage of travel times calculated for entire corridor for the entire month, NB

SB

Data Quality

- Ease of Data Access
- Latency for Real-Time Application
- Reliability of Data Stream
- Ability to Archive Data
- Durability of Equipment
- Data Availability
- Travel Time Accuracy

Average Travel Speeds for Urban Freeway (Beltline, Madison)

Statistical Analysis – Basic

Mean, standard deviation, and percentiles

I-39/90 Basic Travel Speed Statistics

Detection Type	on	Mean Speed	Standard Deviation	5 th Percentile 95 th Percentile Minimu Speed Speed		ım d	Maximum Speed	
TomTo		95 th p		Bluetooth	n detectors h	ave		N/A
Blueto	corr	ospono		the widest	range of spe	eds, 5	5	98.39
NPMR	COTI	espond		even with	outliers rem	oved ⁾)	73.22
μWave	a	cross d	etection		12.20	55.72	2	74.86
ι	Jnits ar	e in miles	per hour					

Statistical Analysis – Detailed

- Mean absolute error (MAE) Magnitude of Differences
- Root mean square error (RMSE) Highlights Large Differences
- Correlation coefficient (Corr) Linear Relationship
- Theil's inequality coefficient (U) Alignment of time-series data
 - U^{M} bias, U^{S} variance, U^{C} covariance --- 0=perfect match, 1=no pattern

I-39/90 Detailed Travel Speed Statistics

Detection	De	etection	Pairs	MAE	RSME	Corr	U	U™	U ^s	Uc
туре А		Detail	ed stat	istics	show	mixed	resul	ts		
Bluetooth	N	PIVINUS	11,004	5.72	J.00	0.002	0.045	0.045	0.523	0.432
Bluetooth	μW	ave/Loop	11,670	5.83	8.21	0.288	0.063	0.270	0.104	0.626
NPMRDS	μW	ave/Loop	11,770	4.17	5.35	0.434	0.041	0.327	0.075	0.598

Units for MAE and RSME are in miles per hour while correlation and Thiel's coefficients are unitless

Cost Assessment Summary

	TomTom	NPMRDS*	Bluetooth	Microwave	Loop
10 mi.	9.2	15.1	17.3	20.9	25.2
100 mi.	1.5	1.5	9.6	13.2	17.5
1000 mi.	0.6	0.2	8.8	12.4	16.7

Net present cost estimates in thousands of dollars per mile, total for both directions *NPMRDS cannot be used for real-time travel times

- Probe data are significantly less costly
- For short routes, costs similar
- All detection types gain from economies of scale
- Deployments at a small scale are very expensive

Conclusions and Recommendations

Cost-Benefit Comparison of Travel Time Technologies Used in this Study

TomTom (CTT) | NPMRDS | Bluetooth | Microwave | Loop

Conclusions

- Which technology to use? It depends
- Temporary Deployment:
 - Bluetooth or microwave
 - unless you already have probe data
- Permanent Deployment:
 - Small scale loops
 - Large scale probe data
- If probe data contract in place, use that data exclusively and continue to verify with existing infrastructure

	Averages						
	Benefits	2.8	5.0	3.0	3.9	4.2	25
TOPS		3.3	5.0	2.7	3.0	4.0	NISCONSIN TO
TRAFFIC OPERATIONS & SAFETY LABORATORY		3.1	4.1	2.8	3.5	4.1	HT OF TRANSPORT

Future Considerations

- Work with a variety of third-party probe data providers to secure the best price
- Study specific traffic events to get a better picture about latency
- Study TomTom data more precisely to determine true travel time availability percentages
- Study reported travel times as compared to travel times from the technologies in this study
- Be prepared to transition travel time messages to other technologies
- Integrate technologies into the TSM&O Traffic Infrastructure Process (TSMO-TIP)
- Continue to monitor connected vehicles (CVs) as an option for calculating Travel Times

Acknowledgments

- WisDOT Bureau of Traffic Operations
- TomTom

Contacts

- Drakewell Ltd.
- Traffic & Parking Control Co., Inc.
 - Thank You!

- Jonathan Riehl, TOPS Lab jonathan.riehl@wisc.edu
- Elizabeth Schneider, WisDOT Project Manager elizabeth1.schneider@dot.wi.gov

More information: http://www.topslab.wisc.edu/research-areas/tsmo/t3e/

