East-West Bus Rapid Transit Feasibility Study Update and Recommended Locally Preferred Alternative (LPA) Summary

September 2016





A feasibility study to evaluate bus rapid transit service in the East-West Corridor connecting major employment and activity centers between downtown Milwaukee, the Milwaukee Regional Medical Center (MRMC), and Milwaukee County Research Park (MCRP).



#### Legend

East-West BRT LPA
Based on Technical
Analysis and
Public/Stakeholder Input

**Proposed Stations** 

Wells-Wisconsin Downtown Alignment if conditions arise where the LPA is not feasible during NEPA/PE phase of the project





- Downtown Milwaukee is the largest employment hub in Milwaukee County
  - o 81,000 jobs, new investments, 25,000 residents and growing
- Corridor has retail centers and strong neighborhoods in both Wauwatosa and Milwaukee, including the Near West Side Neighborhood:
  - o 30,000 employees and 40,000 residents
- The MRMC/MCRP is a significant employment center and statewide/regional destination
  - Over 16,000 employees and 30,000 daily visitors
  - MCRP has 4,600 employees



#### • Outcomes to transit riders

- Improves existing corridor transit service by:
  - Operating every 10 minutes on weekdays
  - Arriving at downtown stops every 5 minutes during rush hours (either an East-West BRT or Route 30/30X bus)
  - Saving up to 13 minutes in transit travel time between downtown and the Swan Blvd. Park-and-Ride lot
    - This savings translates into over 112 hours a year, which is valued at \$1,464
- Saving up to 8 minutes in transit travel time between downtown and MRMC
  - This savings translates into over 69 hours a year, which is valued at \$901
- Connecting downtown to Miller Park in just over 15 minutes
- Connecting Marquette to the Milwaukee Art Museum in 11 minutes
- Connecting Wauwatosa to Riverside in 23 minutes
- Connection the west side (35th Street) to MRMC in just over 17 minutes



# Outcomes to communities

- Provide cost-effective alternative to a car
  - Owning a car costs corridor residents an average of \$755/month, compared to \$64/month for an MCTS pass

- Expand mobility
  - Improve access for those who cannot or choose not to drive
  - 7,250 to 9,250 corridor residents depend on transit





#### Outcomes to commuters

- Reduce congestion
  - Removes up to 6,700 cars daily
  - Approximately 77% of those cars travelling along Bluemound Road and Wisconsin Avenue are singleoccupant;
- Improve safety
  - Dedicated lanes reduce traffic weaving
  - Dedicated lanes mean cars won't get stuck behind buses





#### Outcomes to businesses

- Catalyze economic development
  - Peer agencies have seen \$500 million or more in investment along BRT routes
- Increase employee attraction and retention
- Attracts businesses and community investment in station areas and along the route because the infrastructure signals permanent investment

#### • Outcomes to the region

- First investment in a regional BRT network
- Provide regional, multi-modal connections
- Improve air quality
  - Generate a 17 million-mile annual reduction in vehicle miles travelled
- Leverage federal funding that is not otherwise available locally



#### **BRT Intelligent Transport Systems**

Transit Signal Priority (TSP)

**Queue Jump Lanes** 

**Real-Time Information Systems** 

Closed Circuit Television Cameras (CCTV)

**Automated Passenger Counts (APC)** 

Automatic Vehicle Location (AVL)

**Transit Control Center** 



### Communications

Most ITS systems use one form or another of communications technologies.

- **Private radio networks:** Consists of a radio base, radio towers and transmitter/receivers in each bus. Enables long-distance exchange of live data.
- **Cellular:** Each bus driver has a cell phone for voice and a cell modem for data (can also be combined). Enables long-distance exchange of live data.
- Wi-Fi: Consists of a garage or an area with wireless access points. Each bus has a Wi-Fi bridge that links the bus to the network.



# **Transit Signal Priority (TSP)**









# **Real-Time Information Signs**



Metro Transit, Minneapolis, MN

#### Notes:

- Pole mounted outside bus stops
- Used at stops with multiple routes, high ridership
- Fiber used for communications to central office



Chicago Transit Authority

#### Notes:

- Smaller size, integrated into shelter
- Cellular communications to center



#### **Fare Collection**





**Sales/vending technology:** Given the higher-quality image and customer-friendly experience that is often one of the goals of BRT, ticket vending machines at BRT stations are typically introduced.



#### Surveillance/CCTV/Security Systems





Surveillance devices are principally made up of closed-circuit television (CCTV) cameras, occasionally equipped with microphones. These enable a central dispatch and/or control center to remotely monitor vehicles, stations and guideways. Alarms can include passengeractivated alarm strips or buttons on vehicles or in stations, and operator panic buttons



#### Automatic Vehicle Location (AVL) Systems



AVL technology is applied to monitor the location of transit vehicles in real time through the use of GPS devices or other location-monitoring methods. Information about the vehicle location is transmitted to a centralized control center in either raw data format or as processed data.

