Maricopa County Arizona Connected Vehicle Testbed

Shayan Khoshmagham and Larry Head ATLAS Research Center Systems and Industrial Engineering University of Arizona

Intelligent Transportation Systems – Wisconsin

September 23, 2015

Connected Vehicles ...

http://www.its.dot.gov/safety_pilot/index.htm

5.9 GHz DSRC vehicle-tovehicle (v2v) and vehicle-toinfrastructure (v2i) communications

SAE J2735 Message Set: BSM, SPAT, MAP, SRM, SSM, RSA...

> Applications: SAFETY MOBILITY ENVIRONMENT

Basic Building Blocks

National Affiliated CV Test Beds

Maricopa County DOT SMARTDrive Program

- Several successful demos during last 3 years:
 - Inaugural SMARTDrive, April 26, 2012
 - AASHTO SCOR, December 3, 2013
 - APTA, March 20, 2014
 - FHWA Scanning Tour, July 22, 2014
 - TRB Sig. Com., May 19, 2015

Test Bed Traffic Info

Multi-Modal Intelligent Traffic Signal Systems MMITSS

- Technical
 - University of Arizona (Prime)
 - University of California Berkeley (PATH)
 - Savari
 - Econolite

- Sponsors Pooled Fund Project
 - FHWA
 - Virginia DOT/UVA
 - Maricopa County DOT
 - Caltrans
 - Minnesota DOT
 - Florida DOT
 - Michigan DOT
 - ...

4 Major Components in MMITSS

Priority Hierarchy

- Rail Crossings
- Emergency Vehicles
- Transit
 - BRT
 - Express
 - Local (Late)
- Pedestrians
- Vehicles
- Freight

Section 2

- Priority for
 - Transit
 - Pedestrians

MMITSS Basic Concept

MMITSS Architecture

Signal Control with Connected Vehicles

Messages (SAE J2735)

- Basic Safety Message (BSM)
 - Part I: temp id, location (GPS), speed, heading, steering angle, brakes, size
 - Part II: Safety extensions (path history, prediction, GPS correction), Vehicle status (wipers, lights, brakes, sensors, throttle, size, ...)
- MAP (Geometric Description)
- SPaT (Signal Phase and Timing)
- Signal Request Message (SRM)
 - Request (preempt or priority id), inLane, outLane, vehicle type), time of service, end of service, transit status (ada, bike, occupancy, door), vehicle ID, BSM data, vehicle status (EV lights)
- Signal Status Message (SSM)
 - Signal status (preempt, priority, transition, flash), preempt or priority cause (vehicle)
- Priority Status Message (PSM being proposed)
 - NTCIP 1211 Signal Request Table
 - Contains a table of all Active Requests received by the infrastructure Priority Request Server from Vehicles

Trajectory Awareness of Connected Vehicles

- Store vehicle trajectories
 - BSM: position(GPS, local), speed, heading
 - Frequency: 0.5s
- Construct MAP
- Locate vehicle on MAP: calculate vehicle states, phase, ETA
- Arrival Table: Input for phase allocation algorithm
- Reflect reality
 - Ensure vehicle privacy
 - Geo-fencing

Intelligent Phase Allocation

- Provide signal control for regular vehicles: Structure
- Extension of optimization of phases (COP) algorithm
 - Arrival data from CV as the input
 - Two-level optimization (Dynamic Programming)

 Two control objectives: minimizing total delay, minimizing queue length

Intelligent Phase Allocation (Cont.)

- Market penetration rate of connected vehicles (Goodall, 2013)
- Estimation of vehicle location and speed (EVLS) of unequipped vehicles

Free-Flow Region	Slow-Down Region			Queuing Region
	Conr	nected Vehicles	Une	quipped Vehicles

• Add detector data under low penetration rate case

н

Signal Priority Control

Priority control algorithm includes:

- A mixed integer linear programming (MILP) mode
 - Dual ring barrier signal controller logic
 - Precedence Diagram
- A signal implementation algorithm
 - Time-Phase Diagram

Signal Priority Request

- Priority vehicle broadcasts signal request message (SRM) that contains requested phase and estimated time of arrival (ETA)
- Different travel modes have their own specific characteristics that affect ETA
- Analyzing the DSRC range (300m)

Mathematical Formulation

- α, β, γ are the weights assigned to priority vehicles, coordination, and regular vehicle w^m is the weight assigned to mode m
- d_{j_m} is the delay of j^{th} request from mode m
- $cd_{p,k}$ is coordination delay for coordinated phase p in cycle k
- $rd_{i,p(i)}$ is the regular vehicle delay for the vehicle that arrives at time *i* for phase *p*
- t_p^k is starting time of phase p in cycle k
- g_p^k is green time of p in cycle k
- $\theta_{j,p}^m \in \{0,1\}$ whether request *j* of mode *m* is served in cycle *k* or not

Pedestrian Crossing

- The TRB Traffic Signal System Committee
- TRB Accessibility Committee
- TRB Pedestrian Committees
- SAAVI (Southern Arizona Association for the Visually Impaired)
- Selected group

Performance Observation and Monitoring

- Collect Basic Safety Message Data
 - ✓ Detailed Spatial and Temporal information
 - ✓ High resolution vehicle Trajectories
 - ✓ By mode, by movement analysis

• Process Trajectories to compute observed

Performance Metric	Abbreviation	Unit	Data Source
Travel Time	Π	Second	MRP_EquippedVehicleTrajectoryAware
Delay	D	Second	MRP_EquippedVehicleTrajectoryAware
Travel Time Variability	TTV	Second	MRP_EquippedVehicleTrajectoryAware
Delay Variability	DV	Second	MRP_EquippedVehicleTrajectoryAware
Queue Length	QL	Meter/number of vehicles	MRP_EquippedVehicleTrajectoryAware
Number of Stops	NS		MRP_EquippedVehicleTrajectoryAware
Volume	V		MRP_TrafficControllerInterface
Occupancy	0	%	MRP_TrafficControllerInterface
Market Penetration Rate	MPR	%	MRP_EquippedVehicleTrajectoryAware & MRP_TrafficControllerInterface

• Performance Measures Used for

- Monitoring and Assessment
- Section Level Control

Partial Trajectories to Preserve the Privacy

Simulated Travel Time Estimation

✓ Daisy Mountain and Memorial Drive ✓ Travel Time Data accumulated every 5 Minutes for Northbound Through Movement

Research and Development Steps

- Algorithm concept definition and application development
- Simulation testing on calibrated models in lab environment
 ✓ Traffic Signal Data
 - ✓ Traffic Demand and Input
 - ✓ DSRC Range
- Field testing at the intersection of Mountain and Speedway in Tucson, AZ

Arizona Connected Vehicle Test Bed implementation

VISSIM Simulation Environment

Arizona CV Test Bed

- Hardware-in-the-loop Simulation (HILS)
- Software-in-the-loop Simulation (SILS)
- Drivermodel.dll API
 - ✓ Coordinates transformation: local -> GPS (Farrell and Barth, 1999)
 - ✓ Pack J2735 BSM/SRM messages (ASN1 encoder/decoder)
 - ✓ Send through UDP socket
- GPS Error Modeling
- OBE Message Distributor
- Docker

Simulation Platform Architecture

GPS Error Modeling

- GPS Error in real world, but doesn't exist in simulation
- Data collection: 2 hours of 1Hz GPS data
- Univariate Autoregressive Integrated Moving Average
 (ARIMA)
- $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + a_t + \theta_1 a_{t-1} + \dots + \theta_q a_{t-q}$
 - x_t : Observed Value of time t.
 - a_t : IID noise term, assumed to be normally distributed
 - ϕ_i : Autoregressive parameters
 - θ_i : Moving average parameters
- ARIMA (2,0,2)
- Residual Normality Test
 - p-value:0.618

Field Testing Scenarios_Impact Assessment

- March 2nd-5th, 2015
- 2 trucks with priority in northbound/southbound
- 2 buses with priority in eastbound/westbound
- 6 regular vehicles
- 10 rounds of testing

Source: Leidos Field Test Plan

Time-Space Diagram with MMITSS

- Daisy Mountain and Gavilan Peak Northbound Movement
- Number of Stops: 1, Number of Queue Encounters: 2
- Using BSMs sent from Truck#1

Time-Space Diagram without MMITSS

- Daisy Mountain and Gavilan Peak Northbound Movement
- Number of Stops: 5, Number of Queue Encounters:1
- Using BSMs sent from Truck #2

THE UNIVERSITY OF ARIZONA

DSRC Range vs. Geo Fencing Sections (MAP Nodes)

- Limitation of Map: WAVE Message Requirement (<1Kb)
 - Reducing Number of Lane Nodes
 - Reducing Number of Lanes on Egress Approaches

True DSRC Range Based on collected BSMs

Geo Fence Area Based on Extension of Map Nodes

Performance Web Application (Cont.)

Conclusion

- Maricopa County DOT is a great partner in the Arizona Connected Vehicle Test Bed for CV research and development.
- A platform to support the design, development, implementation, and testing of CV applications including:
 - Intelligent Traffic Signal Control Application
 - Signal Priority Application
 - Pedestrian Assistance Application
 - Real-time Performance Observation Application
- Using latest standards in wireless communication and messaging
- Real-Time analysis of performance metrics by mode by movement

Shayan Khoshmagham and Larry Head ATLAS Research Center Systems and Industrial Engineering University of Arizona <u>larry@sie.arizona.edu</u> <u>shkhoshmagham@email.arizona.edu</u>

(520) 621-2264

Questions?

