Maricopa County Arizona Connected Vehicle Testbed

Shayan Khoshmagham and Larry Head
ATLAS Research Center
Systems and Industrial Engineering
University of Arizona

Connected Vehicles ...

http://www.its.dot.gov/safety_pilot/index.htm
5.9 GHz DSRC vehicle-tovehicle (v2v) and vehicle-toinfrastructure (v2i) communications

SAE J2735 Message Set: BSM, SPAT, MAP, SRM, SSM, RSA...

Applications: SAFETY MOBILITY ENVIRONMENT

Basic Building Blocks

National Affiliated CV Test Beds

Maricopa County DOT SMARTDrive Program

- Several successful demos during last 3 years:
- Inaugural SMARTDrive, April 26, 2012
- AASHTO SCOR, December 3, 2013
- APTA, March 20, 2014
- FHWA Scanning Tour, July 22, 2014
- TRB Sig. Com., May 19, 2015

Test Bed Traffic Info

10 ASDs in:

- Valley Metro Bus
- Daisy Mountain Fire
- MC DOT REACT Vehicles
- Passenger Cars

Multi-Modal Intelligent Traffic Signal Systems MMITSS

- Technical
- University of Arizona (Prime)
- University of California Berkeley (PATH)
- Savari
- Econolite
- Sponsors - Pooled Fund Project
- FHWA
- Virginia DOT/UVA
- Maricopa County DOT
- Caltrans
- Minnesota DOT
- Florida DOT
- Michigan DOT
- ...

4 Major Components in MMITSS

Priority Hierarchy

- Rail Crossings
- Emergency Vehicles
- Transit
- BRT
- Express
- Local (Late)
- Pedestrians
- Vehicles
- Freight

Section 2

- Priority for
- Transit
- Pedestrians

MMITSS Basic Concept

Real-Time Performance Observation

- Travel Time (by mode and movement)
- Delay (by mode and movement)
- Throughput (by mode and movement)
- Stops (by mode and movement)

Section 1

- Priority for
- Trucks

Priority Hierarchy

- Rail Crossings
- Emergency Vehicles
- Trucks/Freight
- Vehicles
- Transit
- BRT
- Express
- Local (Late)
- Pedestrians

MMITSS Architecture

Signal Control with Connected Vehicles

Messages (SAE J2735)

- Basic Safety Message (BSM)
- Part I: temp id, location (GPS), speed, heading, steering angle, brakes, size
- Part II: Safety extensions (path history, prediction, GPS correction), Vehicle status (wipers, lights, brakes, sensors, throttle, size, ...)
- MAP (Geometric Description)
- SPaT (Signal Phase and Timing)
- Signal Request Message (SRM)
- Request (preempt or priority id), inLane, outLane, vehicle type), time of service, end of service, transit status (ada, bike, occupancy, door), vehicle ID, BSM data, vehicle status (EV lights)
- Signal Status Message (SSM)
- Signal status (preempt, priority, transition, flash), preempt or priority cause (vehicle)
- Priority Status Message (PSM - being proposed)
- NTCIP 1211 signal Request Table
- Contains a table of all Active Requests received by the infrastructure Priority Request Server from Vehicles

Trajectory Awareness of Connected Vehicles

- Store vehicle trajectories
- BSM: position(GPS, local), speed, heading
- Frequency: 0.5s
- Construct MAP
- Locate vehicle on MAP: calculate vehicle states, phase, ETA
- Arrival Table: Input for phase allocation algorithm
- Reflect reality
- Ensure vehicle privacy
- Geo-fencing

Intelligent Phase Allocation

- Provide signal control for regular vehicles: Structure
- Extension of optimization of phases (COP) algorithm
- Arrival data from CV as the input
- Two-level optimization (Dynamic Programming)

- Two control objectives: minimizing total delay, minimizing queue length

Intelligent Phase Allocation (Cont.)

- Market penetration rate of connected vehicles (Goodall, 2013)
- Estimation of vehicle location and speed (EVLS) of unequipped vehicles

- Add detector data under low penetration rate case

Signal Priority Control

Priority control algorithm includes:

- A mixed integer linear programming (MILP) mode
- Dual ring barrier signal controller logic
- Precedence Diagram
- A signal implementation algorithm
- Time-Phase Diagram

Signal Priority Request

- Priority vehicle broadcasts signal request message (SRM) that contains requested phase and estimated time of arrival (ETA)
- Different travel modes have their own specific characteristics that affect ETA
- Analyzing the DSRC range (300m)

Mathematical Formulation

$$
\begin{array}{cc}
\begin{array}{c}
\text { Multi-Modal } \\
\text { Delay }
\end{array} & \begin{array}{c}
\text { Coordination } \\
\text { Delay }
\end{array} \\
\min _{t, g, \theta, \mu} & \alpha\left(\sum_{m, j} w^{m} d_{j_{m}}\right)+\beta\left(\sum_{p, k} c d_{p, k}\right)+\gamma\left(\frac{\sum_{p, i} N_{i} . r d_{i, p(i)}}{\sum_{\text {Degular Vehicle }} N_{i}}\right)
\end{array}
$$

α, β, γ
$w^{m} \quad$ is the weight assigned to mode m
$d_{j_{m}} \quad$ is the delay of $j^{\text {th }}$ request from mode m
$c d_{p, k}$
$r d_{i, p(i)}$
t_{p}^{k}
g_{p}^{k}
$\theta_{j, p}^{m} \in\{0,1\}$
is coordination delay for coordinated phase p in cycle k
is starting time of phase p in cycle k
is green time of p in cycle k
whether request j of mode m is served in cycle k or not
are the weights assigned to priority vehicles, coordination, and regular vehicle
is the regular vehicle delay for the vehicle that arrives at time i for phase p

Pedestrian Crossing

- The TRB Traffic Signal System Committee
- TRB Accessibility Committee
- TRB Pedestrian Committees
- SAAVI (Southern Arizona Association for the Visually Impaired)
- Selected group

Performance Observation and Monitoring

- Collect Basic Safety Message Data
\checkmark Detailed Spatial and Temporal information
\checkmark High resolution vehicle Trajectories
\checkmark By mode, by movement analysis
- Process Trajectories to compute observed

Performance Metric	Abbreviation	Unit	
Travel Time	TT	Second	MRP_EquippedVehicleTrajectoryAware
Delay	D	Second	MRP_EquippedVehicleTrajectoryAware
Travel Time Variability	TTV	Second	MRP_EquippedVehicleTrajectoryAware
Delay Variability	DV	Second	MRP_EquippedVehicleTrajectoryAware
Queue Length	QL	Meter/number of vehicles	MRP_EquippedVehicleTrajectoryAware
Numberof Stops	NS		MRP_EquippedVehicleTrajectoryAware
Volume	V		MRP_TrafficControllerInterface
Occupancy	O	MPR	MRP_TrafficControllerInterface
Market Penetration Rate	MPR		

- Performance Measures Used for
- Monitoring and Assessment
- Section Level Control

Partial Trajectories to Preserve the Privacy

Probability of changing $I D=p=\frac{\text { Travel Time of vehicle }_{j}}{300}$

$$
E T T=\left[\sum_{i=1}^{n} \frac{T T^{i}}{D^{i}}+\sum_{j=1}^{m_{1}} \frac{T T_{1}^{j}}{D_{1}^{j}}+\sum_{j=1}^{m_{2}} \frac{T T_{2}^{j}}{D_{2}^{j}}\right] \times\left[\sum_{i=1}^{n} D^{i}+\sum_{j=1}^{m_{1}} D_{1}^{j}+\sum_{j=1}^{m_{2}} D_{2}^{j}\right] /\left[n+m_{1}+m_{2}\right]
$$

Simulated Travel Time Estimation

\checkmark Daisy Mountain and Memorial Drive
 \checkmark Travel Time Data accumulated every 5 Minutes for Northbound Through Movement

100\% Market Penetration Rate

\longrightarrow Performance Observer TT \quad - VISSIM TT

50\% Market Penetration Rate

75\% Market Penetration Rate

\multimap Performance Observer TT \quad — VISSIM TT

25\% Market Penetration Rate

Research and Development Steps

- Algorithm concept definition and application development
- Simulation testing on calibrated models in lab environment
\checkmark Traffic Signal Data
\checkmark Traffic Demand and Input
\checkmark DSRC Range
- Field testing at the intersection of Mountain and Speedway in Tucson, AZ

- Arizona Connected Vehicle Test Bed implementation

VISSIM Simulation Environment

Arizona CV Test Bed

- Hardware-in-the-loop Simulation (HILS)
- Software-in-the-loop Simulation (SILS)
- Drivermodel.dII API
\checkmark Coordinates transformation: local -> GPS (Farrell and Barth, 1999)
\checkmark Pack J2735 BSM/SRM messages (ASN1 encoder/decoder)
\checkmark Send through UDP socket
- GPS Error Modeling
- OBE Message Distributor
- Docker

Simulation Platform Architecture

GPS Error Modeling

- GPS Error in real world, but doesn't exist in simulation
- Data collection: 2 hours of 1 Hz GPS data
- Univariate Autoregressive Integrated Moving Average (ARIMA)
- $x_{t}=\emptyset_{1} x_{t-1}+\emptyset_{2} x_{t-2}+\cdots+\emptyset_{p} x_{t-p}+a_{t}+\theta_{1} a_{t-1}+\cdots+\theta_{q} a_{t-q}$

Normal Q-Q Plot

OBE Message Distributor

Field Testing Scenarios_Impact Assessment

- March $2^{\text {nd }}-5^{\text {th }}, 2015$
- 2 trucks with priority in northbound/southbound
- 2 buses with priority in eastbound/westbound
- 6 regular vehicles
- 10 rounds of testing

Time-Space Diagram with MMITSS

- Daisy Mountain and Gavilan Peak Northbound Movement
- Number of Stops: 1, Number of Queue Encounters: 2
- Using BSMs sent from Truck\#1

Truck \#1
Tuesday Afternoon: 1:30 pm - 5:00 pm

Time-Space Diagram without MMITSS

- Daisy Mountain and Gavilan Peak Northbound Movement
- Number of Stops: 5, Number of Queue Encounters:1
- Using BSMs sent from Truck \#2

Truck \#2
Wednesday Afternoon: 1:30 pm - 5:00 pm

DSRC Range vs. Geo Fencing Sections (MAP Nodes)

- Limitation of Map: WAVE Message Requirement (<1Kb)
- Reducing Number of Lane Nodes
- Reducing Number of Lanes on Egress Approaches

True DSRC Range Based on collected BSMs

Performance Web Application (Cont.)

Conclusion

- Maricopa County DOT is a great partner in the Arizona Connected Vehicle Test Bed for CV research and development.
- A platform to support the design, development, implementation, and testing of CV applications including:
- Intelligent Traffic Signal Control Application
- Signal Priority Application
- Pedestrian Assistance Application
- Real-time Performance Observation Application
- Using latest standards in wireless communication and messaging
- Real-Time analysis of performance metrics by mode by movement

Shayan Khoshmagham and Larry Head ATLAS Research Center Systems and Industrial Engineering University of Arizona larry@sie.arizona.edu
shkhoshmagham@email.arizona.edu

(520) 621-2264

Quesin?

